March 15, 2006: NASA astronauts are going back to the moon and when they get there they may need quake-proof housing.
That's the surprising conclusion of Clive R. Neal, associate professor of civil engineering and geological sciences at the University of Notre Dame after he and a team of 15 other planetary scientists reexamined Apollo data from the 1970s. "The moon is seismically active," he told a gathering of scientists at NASA's Lunar Exploration Analysis Group (LEAG) meeting in League City, Texas, last October.
Between 1969 and 1972, Apollo astronauts placed seismometers at their landing sites around the moon. The Apollo 12, 14, 15, and 16 instruments faithfully radioed data back to Earth until they were switched off in 1977.
The first three were generally mild and harmless. Shallow moonquakes on the other hand were doozies. Between 1972 and 1977, the Apollo seismic network saw twenty-eight of them; a few "registered up to 5.5 on the Richter scale," says Neal. A magnitude 5 quake on Earth is energetic enough to move heavy furniture and crack plaster.
On Earth, vibrations from quakes usually die away in only half a minute. The reason has to do with chemical weathering, Neal explains: "Water weakens stone, expanding the structure of different minerals. When energy propagates across such a compressible structure, it acts like a foam sponge—it deadens the vibrations." Even the biggest earthquakes stop shaking in less than 2 minutes.
The moon, however, is dry, cool and mostly rigid, like a chunk of stone or iron. So moonquakes set it vibrating like a tuning fork. Even if a moonquake isn't intense, "it just keeps going and going," Neal says. And for a lunar habitat, that persistence could be more significant than a moonquake's magnitude.
"Any habitat would have to be built of materials that are somewhat flexible," so no air-leaking cracks would develop. "We'd also need to know the fatigue threshold of building materials," that is, how much repeated bending and shaking they could withstand.
"We're especially ignorant of the lunar poles," Neal continues. That's important, because one candidate location for a lunar base is on a permanently sunlit region on the rim of Shackleton Crater at the Moon's south pole.
Neal and his colleagues are developing a proposal to deploy a network of 10 to 12 seismometers around the entire moon, to gather data for at least three to five years. This kind of work is necessary, Neal believes, to find the safest spots for permanent lunar bases.
And that's just the beginning, he says. Other planets may be shaking, too: "The moon is a technology test bed for establishing such networks on Mars and beyond."
from: http://science.nasa.gov